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While electromagnetic motors still dominate the industry, a drastic improvement cannot
be expected. Regarding conventional electromagnetic motors, tiny motors smaller than
1cm arerather difficult to produce with sufficient energy efficiency. Therefore, a new
class of motors using high power ultrasonic energy --ultrasonic motor-- is gaining wide
spread attention. Ultrasonic motors made with piezoceramics whose efficiency is
insensitive to size are superior in the mini-motor area.

This paper reviews recent developments of miniature ultrasonic motors using
piezoelectric resonant vibrations, which will be a promising candidate for miniature
robotics for space applications and medical micro-surgery applications. Following the
historical background, ultrasonic motors using the standing and traveling waves are
introduced. Driving principles and motor characteristics are explained in comparison
with the conventional electromagnetic motors. Finally, the application to a space vehicle
IS presented.

The ultrasonic motor is characterized by "low speed and high torque,” which is contrasted
with "high speed and low torque” of the electromagnetic motors. Two categories are
being investigated for ultrasonic motors: a standing-wave type and a propagating-wave
type. The standing-wave type is sometimes referred to as a vibratory-coupler type

or a"woodpecker" type, where a vibratory piece is connected to a piezoelectric driver and
the tip portion generates flat-elliptical movement. Attached to arotor or adider, the
vibratory piece provides intermittent rotational torque or thrust. The standing-wave type
has, in general, high efficiency, but lack of control in both clockwise and
counterclockwise directionsis a problem. By comparison, the propagating-wave type (a
surface-wave or "surfing" type) combines two standing waves with a 90 degree phase
difference both in time and in space, and is controllable in both rotational directions. By
means of the traveling elastic wave induced by the thin piezoelectric ring, aring-type
dider in contact with the "rippled" surface of the elastic body bonded onto the
piezoelectric is driven in both directions by exchanging the sine and cosine voltage
inputs. Another advantage is its thin design, which makes it suitable for installation in
cameras as an automatic focusing device.

We have been developing miniature ultrasonic motors in the size range of 3 - 10 mmf,
with using a simple structure and a minimum number of components. A compact rotory
motor astiny as 3 mm in diameter has been fabricated. The stator consists of a
piezoelectric ring and two concave/convex metal endcaps with "windmill" shaped slots
bonded together, so asto generate a coupled vibration of up-down and tortional type.



When diven at 160 kHz, the maximum revolution 600 rpm and the maximum torque 1
mN.m were obtained for a3 mm diamotor. An application to a miniature vehicle is
cenceptually presented.
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10 MERITS & DEMERITS OF USM

. Low speed & high torque - Direct drive
. Quick response, wide velocity range, hard brake &

no backlash - Excellent controllability
- Fine positioning resolution

. High power/weight ratio & high efficiency

. Quiet drive

. Compact size & light weight

. Simple structure & easy production process

. Negligible effect from an external magnetic field or

radioactive field & no generation of them

Necessity of a high frequency power supply
Less durability due to frictional drive

10. Drooping torque-speed characterictics



BASIC CONSTRUCTION
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STANDING WAVE vs. PROPAGATING WAVE

u(x,t)
u(x,t)

A cos kx cos wt (1)
A cos(kx - wt)
A cos kx cos wt

+ A cos(kx - 1/2) cos(wt - 1/2) (2)
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A propagating wave can be generated
by superimposing two standing waves
whose phase differs by 90° each other
in time and in space.
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PRINCIPLE OF STANDING WAVE TYPE MOTOR
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PRINCIPLE OF PROPAGATING WAVE TYPE MOTOR
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STRUCTURES OF USM'S
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MULTILAYER PIEZOELECTRIC
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ROTARY-TYPE (Shinsei Kogyo Co.)
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Fig. 6.4. Installation cof the ultrasonic motor in a lens idimensions in mmb
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Fig. 6.7. Construction of
the motor shown in Fig.
6.6 (stator: By;-mode
disk; 2-phase driving).

Table 6.2. Basic specifications of
Seiko watch motor

Outside diameter 10 mm
Thickness 4.5 mm
Driving voltage 3V

No-load speed 6000 rev min ™"
Starting torque 0.l mNm

No-load current 60 mA




Fig. 6.6. Small motor fc
the silent alarm of watct
(diameter 10.0 mm),
(Seiko Electric Industria
Co. Ltd).
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Fig. 6.8. Watch equipped
with a silent alarm using
an ultrasonic motor
(Hattori Seiko Co. Ltd).
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Construction of Seiko's Ultrasonic Motor




Duralumin Mountain for Micro Machine Climbing



Why Ultrasonic Motors?

Conventional Electromagnetic Motors

Size limit > 1 cm3

Permanent magnet

Coil

Magnetic shield

Ultrasonic Motors

Simple structure
Compact size

Efficiency insensitive to size
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Rotary motor
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Motor Characteristics of a "Windmill" Type



SUMMARY

Ultrasonic Motor  Electromagnetic Motor

Speed: Low High
Torque: High Low
Drive: Direct Gear is coupled
Miniaturization:

< 3 mmo >1cm3
Overload: Homeostatic Self-destructive

FUTURE WORK

(1) USM designs (further miniaturization)
*standing wave types
*less number of components
*simpler manufacturing process

(2) low loss & high vibration velocity piezo-ceramics
*much "harder" piezoceramics

(3) piezo-component designs with high resistance to
fracture and good heat dissipation

(4) high frequency/high power supplies
*antiresonance mode usage



